Transcriptional phase variation at the flhB gene of Pseudomonas putida DOT-T1E is involved in response to environmental changes and suggests the participation of the flagellar export system in solvent tolerance.

نویسندگان

  • Ana Segura
  • Ana Hurtado
  • Estrella Duque
  • Juan L Ramos
چکیده

Frameshift mutations in a poly(G) track at the flhB gene of Pseudomonas putida DOT-T1E are responsible for the diminished swimming of this strain on semisolid medium, which contrasts with the high swimming ability of P. putida KT2440, which does not exhibit a poly(G) track at the flhB gene. We previously showed that a mutant lacking FlhB was more sensitive to solvents than the wild-type strain (Segura et al., J. Bacteriol., 183:4127-4133, 2001). In this study, we show that swimming ability correlates with solvent tolerance in P. putida DOT-T1E, so that growth conditions favoring a functional flhB gene (growth on semisolid medium) resulted in increased innate tolerance to a sudden toluene shock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene.

Pseudomonas putida strains are generally recognized as solvent tolerant, exhibiting varied sensitivity to organic solvents. Pan-genome analysis has revealed that 30% of genes belong to the core-genome of Pseudomonas. Accessory and unique genes confer high degree of adaptability and capabilities for the degradation and synthesis of a wide range of chemicals. For the use of these microbes in bior...

متن کامل

Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E.

The basic mechanisms underlying solvent tolerance in Pseudomonas putida DOT-T1E are efflux pumps that remove the solvent from bacterial cell membranes. The solvent-tolerant P. putida DOT-T1E grows in the presence of high concentrations (e.g., 1% [vol/vol]) of toluene and octanol. Growth of P. putida DOT-T1E cells in LB in the presence of toluene supplied via the gas phase has a clear effect on ...

متن کامل

Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT‐T1E

Bacterial membranes constitute the first physical barrier against different environmental stresses. Pseudomonas putida DOT-T1E accumulates cyclopropane fatty acids (CFAs) in the stationary phase of growth. In this strain the cfaB gene encodes the main cyclopropane synthase responsible of the synthesis of CFAs, and its expression is mediated by RNA polymerase with sigma factor σ(38). We generate...

متن کامل

A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism.

Sequence analysis in Pseudomonas putida DOT-T1E revealed a second toluene efflux system for toluene metabolism encoded by the ttgDEF genes, which are adjacent to the tod genes. The ttgDEF genes were expressed in response to the presence of aromatic hydrocarbons such as toluene and styrene in the culture medium. To characterize the contribution of the TtgDEF system to toluene tolerance in P. put...

متن کامل

Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols.

Pseudomonas putida strain DOT-T1E is highly tolerant to organic solvents, with a logP(ow) (the logarithm of the partition coefficient of a solvent in a two-phase water-octanol system of > or =2.5. Solvent tolerant microorganisms can be exploited to develop double-phase (organic solvent and water) biotransformation systems in which toxic substrates or products are kept in the organic phase. We t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 6  شماره 

صفحات  -

تاریخ انتشار 2004